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Table 1. Number of storms in the different seasons and 
months

Seasons yearMonths yearNumber of storm
happened

Spring
April

358

May
473

June
553

Summer
July

438

August
394

September
261

Autumn
October

177

November
171

December
93

Winter
January

102

February
107

March
215

Sum3342
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Table 2. Characteristic paramaters datas input and
output

ParamaterData typeData unitePurvey style

Thunder
storms

Quantitative-
input

Number
happened

Yazd

wind
magnitude

Quantitative-
input

NotYazd

wind
duration

Quantitative-
input

NotYazd

VisibilityQuantitative-
input

MeterYazd

fastest wind
speed

Quantitative-
input

NotYazd

average
wind speed

Quantitative-
input

NotYazd

prevailing
winds

Quantitative-
input

NotYazd

Number
dust storms

Quantitative-
output

Number
happened

Yazd
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Table 3. Sample from Gamma Test result and select
most appropriate combinations

Parameter
combinations

GammaSEVRatio

11111110/159720/0154010/63889
01101010/14080/0193990/5632
01110010/17060/0129780/6824
01100110/18920/00909480/75682
10111000/18870/0129610/7548
11000110/16550/0131520/66201



Table 4. Result different styles sake select most appropriate input combinations neural network

Statistic Styleinput combination
R²RMSE

Principal Components Analysis 
(wind fastest) (wind    duration)

(visibility) (prevailing wind)
0/84

0/078

Stepwise Regression
(wind  duration) (visibility) (prevailing wind)

(average speed)
0/870/04

Maximum likelihood
(wind  magnitue) (average speed) (wind fastest)

(wind duration)
0/730/195

Principal Components
(prevailing speed) (wind fastest)

(wind  magnitue) (average speed)
0/780/098

(wind fastest) (wind duration) (wind  magnitue)

(prevailing wind)0/850/065

Table 5. Result different styles sake select most appropriate input combinations neural network

Artificial intelligence styleinput combination
R²RMSE

Neural network
(wind (visibility) (prevailing speed)

(average speed) duration)
0/870/04

Decision tree
(visibility) (prevailing speed)

(wind duration) (average speed)0/86
0/064
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String

 April0/960/0094

 May0/970/041

 June0/950/048

Summer

 July0/950/145

 August0/940/208

 September0/950/049

Autumn

 October0/910/076

 November0/930/038

 December0/870/135

Winter

 January0/860/119

 February0/850/060

 March0/920/140
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Abstract

Comparing the Best Input Combining Artificial Neural Networks and Decision Tree 
Method to Identify Factors that Influence the Phenomenon of Dust Storm (Case Study: 

Yazd Province)

M. R. Ekhtesasi1, M. Yousefi2 and M. Tavakoli3
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One of the major natural disasters that caused tremendous damages each year in many areas of  the country 
is desert, especially in Yazd, Iran. Strong winds and the formation of dust storms will take place several 
times each year. In this study, data from meteorological stations in Yazd (thunder storms, wind magnitude 
(size, amount), wind duration, visibility, fastest wind speed, average wind speed, prevailing winds and dust 
storms) in the period 1953-2005 were used on a monthly basis. In order to determine the most appropriate 
combination of neural network and input parameters (inputs) that influence the phenomenon of dust storms 
from Variable reduction technique of factor analysis (maximum likelihood, principal component), principal 
component analysis, stepwise progressive and gamma test were used. Each of the methods presented, each 
with a different combination of these compounds neural network feed Forward back propagation with the 
algorithm of Levenberg-Marquardt have been used. The results showed that the stepwise progressive R² 
= 0.87 and RMSE = 0.04 provides the most suitable combination for a neural network. Comparison of 
simulated dust storm phenomenon in seasons and months in different years showed that the phenomenon 
of dust storm in summer and spring seasons and months of April, May, June, July, August and September 
are different. In comparing the neural network feed forward back propagation models with algorithm of 
Levenberg-Marquardt and decision tree with algorithm CART, Neural networks with a correlation coefficient 
of 0.87 and the root mean square error of 0.04, the decision tree method with a correlation coefficient of 
0.86 and the root mean square error of 0.06 has more carefully in order to simulate dust storm.      
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