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Extended Abstract

Introduction

Groundwater salinity represents one of the most serious threats to water quality in arid and semi-arid regions, directly
influencing agriculture, ecosystems, and sustainable development. In such vulnerable environments, identifying and mapping
areas susceptible to salinization are essential for effective water resource management and informed land-use planning. Salinization
reduces the availability of potable water and degrades soil quality, leading to declining crop yields and long-term ecological
imbalance. Increasing dependence on groundwater caused by population growth, agricultural intensification, and industrial
development further aggravates the problem, especially in regions with low recharge rates and high evaporation. Iran, located
mainly within arid and semi-arid climatic zones, faces considerable challenges in maintaining the quality and sustainability of
its groundwater resources. The Koohpayeh-Segzi plain in Isfahan Province exemplifies these challenges, as groundwater plays
a fundamental role in sustaining agricultural productivity and local livelihoods. However, extensive groundwater extraction
combined with natural geochemical processes has resulted in a steady increase in salinity levels. Consequently, understanding the
spatial distribution and controlling factors of groundwater salinity in this region is crucial for mitigating future risks. This study,
therefore, aims to evaluate groundwater salinity susceptibility in the Koohpayeh-Segzi plain using advanced machine learning

techniques to improve predictive accuracy and support sustainable groundwater management strategies.

Materials and Methods

This study employed two ensemble learning algorithms Adaptive Boosting (AdaBoost) and Bagged AdaBoost to evaluate
groundwater salinity susceptibility in the Koohpayeh-Segzi plain. The Bagged AdaBoost model represents an enhanced version
of the standard AdaBoost algorithm, incorporating bootstrap-based aggregation to improve model robustness and predictive
reliability. The dataset used for modeling consisted of annual average salinity observations from 50 monitoring wells recorded
over a 23-year period, providing a comprehensive temporal representation of groundwater quality dynamics. A wide range of
conditioning factors was considered as predictor variables, encompassing topographic parameters (elevation, slope, and aspect),

climatic variables (evaporation and precipitation), hydrological indices (topographic wetness index and distance to streams),
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hydrogeological indicators (depth to groundwater table and groundwater level decline), geological factors (distance to faults
and lithology), as well as soil order and land use types. All spatial data layers were prepared and standardized in a geographic
information system (GIS) environment to ensure consistency across scales and units. Model performance was quantitatively
assessed using multiple statistical metrics, including accuracy, precision, Kappa coefficient, and F1-score, to ensure reliable
evaluation of classification outcomes. The final groundwater salinity susceptibility maps were produced based on the trained
ensemble models, illustrating the spatial distribution of salinity risk across the study area and offering critical insights for

sustainable groundwater management and regional land-use planning.

Results and Discussion

The comparative analysis of model performance demonstrated that the Bagged AdaBoost algorithm significantly outperformed
the standard AdaBoost across all evaluation metrics, indicating its superior capability in capturing complex patterns associated
with groundwater salinity. Specifically, the overall accuracy increased from 0.89 to 0.93, precision improved from 0.67 to 0.80,
F1-score rose from 0.80 to 0.89, and the Kappa coefficient a measure of agreement beyond chance enhanced from 0.72 to 0.85.
These improvements reflect the enhanced stability and generalization power of the Bagged AdaBoost model, particularly in
handling heterogeneous environmental data. To further interpret model behavior, a variable importance analysis was conducted,
revealing that groundwater depth, elevation, and evaporation were the most influential predictors in determining salinity
susceptibility. These variables are closely linked to the region’s hydrogeological and climatic conditions, underscoring their
critical role in salinization processes. The spatial susceptibility map generated from the optimized model illustrated a distinct
gradient in salinity risk, with elevated levels predominantly concentrated in the southern and western portions of the Koohpayeh-
Segzi plain. In contrast, the northern and eastern zones exhibited relatively lower susceptibility. This spatial pattern corresponds
well with known regional dynamics, including groundwater flow direction, recharge limitations, and anthropogenic pressures
such as intensive agricultural activity and land-use changes. The findings highlight the utility of ensemble learning approaches in
environmental modeling and provide actionable insights for targeted groundwater management and salinity mitigation strategies

in vulnerable arid and semi-arid regions.

Conclusion

The integration of Adaptive Boosting (AdaBoost) with bagging techniques substantially enhances the robustness, accuracy,
and predictive reliability of groundwater salinity susceptibility modeling, particularly in regions characterized by data scarcity
and environmental heterogeneity. By combining AdaBoost’s iterative error-correction capability with bagging’s variance-
reduction mechanism, the hybrid Bagged AdaBoost model achieves greater stability, minimizes overfitting, and demonstrates
improved generalization across diverse datasets. The generated groundwater salinity susceptibility maps provide detailed spatial
insights into areas most prone to salinization, offering valuable information for water resource managers, agricultural planners,
and environmental policymakers. These maps enable the identification and prioritization of critical zones requiring immediate
intervention, thus supporting the design of adaptive and site-specific management strategies aimed at mitigating salinity
risks. Moreover, the results highlight the effectiveness of ensemble-based machine learning approaches in capturing complex
nonlinear relationships among environmental, geological, and hydrological factors. The study also emphasizes the importance
of integrating machine learning frameworks with geographic information systems to enhance visualization, interpretation, and
practical applicability of model outputs. Overall, this research demonstrates the strong potential of ensemble learning models for
groundwater quality assessment and advocates for their broader application in arid and semi-arid regions, where conventional

statistical or deterministic methods often face limitations due to insufficient, inconsistent, or highly variable datasets.
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2. Artificial neural networks

3. Support vector machine

4. Adaptive Boosting

5. Bagged Adaptive Boosting

6. Averaged neural networks

7. Heteroscedastic discriminant analysis
8. Rotation forest

9. Ensemble learning

10. Stacking

11. Simulated Annealing

12. Flexible discriminant analysis

13. Mixture discriminant analysis

14. Boosted regression tree

15. Multivariate adaptive regression spline
16. Random forest

17. Stochastic gradient boosting
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1. Saline water intrusion
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4. Adaptive boosting
5. Bagged adaptive boosting
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Table 1. Input variables used for modeling groundwater salinity

s ) ol e S8
Variable Unit Collected method/ Source
g Elevation (m) ;e Aster DEM 28 x 28 m
i Slope “‘(7;’ Aster DEM 28 x 28 m
o g Aspect _ Aster DEM 28 x 28 m
SIS s Cusb, asls Topographic wetness index (TWI) _ SAGA GIS
aal 15l sl Distance to stream (DTS) m) Euclidian distance tool in ArcGIS
Sk Precipitation (PCP) j(; TTL; Meteorological rg;;ghin;zanon/ Kriging
o Evaporation A Meteorological Organization/ Kriging
Boary (mm) method
slaol ol U Gee Depth to groundwater level ) Iranian Water Resources Management
3 (DGWL) m) e Company (IWRMC)
EVSY _.j ol Groundwater level decline m) ' IWRMC '
Iran Geological Organization (IGO) /
S S et to faults (DTF) Distance (m) e Euclidian distance tool in ArcGIS
Sl gdues Soil order _ Iranian Water and Soil Institute
PR Lithology _ IGO
Sentinel 2 / Support vector machine
i Landuse - classification in ENVI
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Fig 3. Factors affecting groundwater salinity: a) elevation, b) slope, c¢) aspect, d) topographic wetness index (TWI), e) distance

to stream (DTY), f) precipitation (PCP), g) evaporation, h) depth to groundwater level (DGWL), i) groundwater level decline,
j) distance to faults (DTF), k) soil order, 1) lithology, and m) land use
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Table 2. Optimal values of the models’ hyperparameters
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Table 3. Evaluation of the efficiency of groundwater salinity modeling
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Fig 4. Groundwater salinity susceptibility map based on the Bagged AdaBoost model
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Table 4. Importance of input variables in groundwater

salinity susceptibility modeling

. LW
Variables b e e
i Importance
Depth to groundwater level <! éa‘" e 17.2
ORI
Elevation CL“ 5l 15.8
Evaporation s 13.6
Slope i 8.4
Decline ol 8.2
Distance to fault S dob 5.9
Aspect i 5.6
Distance to stream wal ,J G ol 4.8
Precipitation ool 4.5
Soil order St s, 42
Topographic Wetness Index sk /U‘”; L 4.1
Sy
Land use s S 4
Lithology iR g 3.7
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