[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 7, Issue 21 (7-2013) ::
jwmseir 2013, 7(21): 67-70 Back to browse issues page
A study on the simulation of rainfall-runoff process using Artificial Neural Network (ANN) and HEC-HMS (Case study: Kasilian Basin)
Vahid Gholami * , Zahra Darvari
Abstract:   (13756 Views)
HEC-HMS and Artificial Neural Network (ANN) were applied to simulate rainfall- runoff process in Kasilian Basin where is located in the north of Iran with an area of 68 km2. ANN has high capability in establishing connection between input and output data and HEC-HMS model has high capability in optimizing simulated hydrograph. Initial Loss is a quantitative parameter which is dependent on three main factors including: soil, vegetation and Antecedent Moisture Conditions(A.M.C). In this study after optimizing initial loss using HEC-HMS model, this parameter along with incremental rainfall were applied qua inputs in ANN to simulate runoff or discharge values. Comparison of the obtained results using ANN (two cases: using optimized initial loss and without optimized initial loss in simulating runoff-rainfall process) showed that optimized initial loss has a high effect in increasing (twice in some events) the simulation accuracy of run off and flood hydrograph.
Keywords: ANN, HEC-HMS, Initial Loss, Kasilian Basin and Rainfall- runoff simulation.
Full-Text [PDF 149 kb]   (2555 Downloads)    
Type of Study: Research | Subject: Special
Received: 2014/03/2 | Accepted: 2014/03/2 | Published: 2014/03/2
Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gholami V, Darvari Z. A study on the simulation of rainfall-runoff process using Artificial Neural Network (ANN) and HEC-HMS (Case study: Kasilian Basin) . jwmseir 2013; 7 (21) :67-70
URL: http://jwmsei.ir/article-1-263-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 7, Issue 21 (7-2013) Back to browse issues page
مجله علوم ومهندسی آبخیزداری ایران Iranian Journal of Watershed Management Science and Engineering
به اطلاع کلیه نویسندگان ، محققین و داوران  محترم  می رساند:

با عنایت به تصمیم  هیئت تحریریه مجله علمی پژوهشی علوم و مهندسی آبخیزداری فرمت تهیه مقاله به شکل پیوست در بخش راهنمای نویسندگان تغییر کرده است. در این راستا، از تاریخ ۱۴۰۳/۰۱/۲۱ کلیه مقالات ارسالی فقط در صورتی که طبق راهنمای نگارش جدید تنظیم شده باشد مورد بررسی قرار خواهد گرفت.
Persian site map - English site map - Created in 0.07 seconds with 35 queries by YEKTAWEB 4700