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Abstract 
There are numerous methods for data filling 
in hydrology. Most, however, are based on 
correlations with nearby stations in a general 
scheme of regionalization. These methods, 
though robust, fail to function when and 
where all the near stations are missed-data 
too. The Mashhad synoptic station has annual 
rainfall data over a 50 year period from 1951 
to 2000 and historic rainfall data from 1893 to 
1940, just before World War II. This time 
series has about 15 years of missed data 
which can not be filled by usual methods. So, 
the techniques of geostatistics and kriging 
were adopted to this long-term time series as 
an alternative. The data showed a poor 
correlation at every time lag, showing that, 
while all the semi-variogram models 
performed nearly equal, there was a high 
correlation among each of the others. The 
results included with polynomial regression 
fits to different moving average orders, nailed 
at some reasonable estimates for missed 
rainfall values. 
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Introduction 
The estimation of missed data of climatic or 
hydrological parameters is one of the 
applications of statistics in hydrology. The 
reason we proceed for estimation lies in the 
fact that delaying a project is not warranted, 
even under long data-short series. On the 
other hand, one can not ignore the marked 
role of data in hydraulic designs. There are 
plenty of methods for such estimations in 
hydrology. Texts and common / recent or just 
literature fully describe these methods. 

Today it is quite possible to make an 
unbiased estimate of any missed parameter 
through a method called kriging, after D.G. 
Krige [1], which shows a geostatistical 
structure. In addition to presenting an estimate 
over a geographical location, a kriging 
estimator specify the error of estimate of the 
parameter at hand, which holds marked 
superiority over the common estimation 
methods. Therefore, one may categorize the 
applications of geostatistics as interpolation, 
averaging, and network design. In 
interpolation it is possible to estimate any 
missed parameter over a regular, or even 
irregular data points [2]. In averaging, it is 
possible to average a specific parameter over 
a region under study, e.g. rainfall over a 
watershed [3]. In network design, it is 
possible to find the best locations for 
monitoring a specific parameter over a region 
[4,5]. 

Szentimery [6] has focused on the 
mathematical background of spatial 
interpolation methods, especially those of 
geostatistics, which are currently in use in 
climatology. More recently, geostatistical 
space–time models are being used 
increasingly for addressing environmental 
problems such as monitoring acid deposition 
or global warming, and forecasting 
precipitation or stream flow [7]. In this field 
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of research, Perry and Hollis [8] generated 
monthly and annual 5km x 5km grided 
datasets covering the UK  for the 1961-2000 
period for 36 climatic parameters. Time series 
approaches may also be generalized to a 
continuous spatial domain and maps of a 
specific parameter (e.g. precipitation levels as 
reported by Johnson et al., [9] may be 
constructed at any arbitrary location via 
interpolation of time series model parameters. 
Kyriakidis et al. [10] presented a framework 
for stochastic spatio-temporal modeling of 
daily precipitation as a shorter scale 
parameter in a hindcast mode. Observed 
precipitation were modeled levels in space, 
and time as a joint realization of a collection 
of space indexed the time series, one for each 
spatial location. 

The above literature supports the use 
of kriging in space and also in space-time 
environments. Both of the above techniques 
fail to operate in the case of a general data-
lack in a region. This research has focused on 
the possibility of a geostatistics application on 
long term annual rainfall for Mashhad in Iran, 
where no other regionalization method exists 
to fill the missed data. 

 
Materials and Methods 
Mashhad a city in the center of Khorasan 
Razavi Province, is located in the northeast 
part of Iran at a latitude of 36o17', longitude of 
59o38', and an altitude of 946 MSL. The 
Mashhad synoptic station has annual rainfall 
data over a 50 year period from 1951 to 2000, 
prepared from The Islamic Republic of Iran 
Meteorological Organization (IRIMIO). 
There is historic rainfall data from 1983 to 
1940, just before World War II when the 
British embassy had priority over the politics 
of Iran. However, over this period of 107 
years, there is a scatter (1894, 1895, 1905, 
1918, 1919, and 1929) and a continuous 10 
year period of (1941-1950) missed data. 
Figure 1 shows the Mashhad annual rainfall in 
Mashhad. The historic data were reported in 
inches, so the recent data was changed from 
millimeters to inches in order to have a 
uniform data set. 

 
 
 The normality test of data is performed by 
Anderson-Darling, Joiner-Ryon, and 
Kolmogrov-Smirnov tests [11]. Considering 
the 10-year gap from 1941-1950 in the data, 
the rainfall time series is divided into two 
periods, 1893-1941 and 1950-2000. Some 
standard hypothesis tests were done on these 
two series. The Equality test of variances 
[12], parametric tests of the rank-sum test and 
two-sample test, and the non-parametric test 
of Kruskal-Wallis [13] were adopted for 
hypothesis testing for the equality of means. 
To test whether there is any similarity 
between the two groups we also traced the 
linear trend in the form of y=a+b.x 
(x=number of year- starting from 1- as an 
independent variable, and y=rainfall as a 
dependent variable). An ANOVA analysis 
was carried out to compare the two trend lines 
corresponding to the two halves [12]. 
 In the kriging system the estimate of a 
variable value, Z*(xo), at a specified location 
xo and its corresponding variance, 
VAR(Z*(xo)), (minimum estimation error) is 
computed as follows: 
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where Z(xi) is the value of the parameter 
under investigation at location xi, and Γio is 
the semi-variogram between points at (i) and 
(o). The optimal weights (αi) and Lagrangian 
multiplier (µ) are found by matrix algebra [1]. 
The semi-variogram Γ(h), a measure of 
spatial dependency, is an essential part of the 
spatial model and can be computed as: 
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Fig (1) Mashhad annual rainfall time 
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where h is the lag, N(h) is the number of 
paired points with lag h, and Z(xi+h) is the 
value of the parameter under investigation at 
location (xi+h). The sample semi-variogram 
consists simply of ordered sets of discrete 
values and are subject to error. However, 
there are some well-known semi-variogram 
models of stationary (Gaussian, Exponential, 
and Spherical models), and intrinsic non-
stationary models (Power, and Linear models) 
to fit the raw values. The Comprehensive 
definitions of these models are presented 
elsewhere [1] and are not dealt with here. 

The appropriateness of a semi-
variogram model can be tested by 
standardized residuals [1]. Assume that the 
sample consists of n point measurements of 
z(xi). Drop one measurement, z(xk), then 
using the other measurements and the 
assumed variogram, estimate the value z at 
location xi and its mean square estimation 
error, kẑ  and σ2

k , respectively. The 
corresponding standardized residual can then 
be computed from: 

( )
n,...,1kẑxz)k(e

k
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σ

−
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The same procedure is repeated for all 
measurements. Then the following two 
statistics are determined: 
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If the model is consistent with the data, the 
first number must be near zero, while the 
second must be near one. 

Polynomial fit. The similarities 
between an undulating rainfall time series and 
a polynomial may tempt a curious person to 
fit a polynomial regression on such series. On 
an annual time scale, however, rainfall 
behaves so erratically that it can hardly follow 
a smooth polynomial. Moving average is a 
technique commonly adopted for smoothing 
such wild series. By this, wet and dry years 
are found in a more sensible manner. We have 
managed different moving averages, up to 11 
years, for such smoothening. Which order of 
the polynomial is more fitted to the data is 

another issue. It is known that lower orders of 
a polynomial are less flexible for covering 
optimal humps and depressions. Higher 
orders of polynomials, on the other hand, try 
"sharply" to follow such points, which is a 
serious danger in the case of sparse data 
series. This may result in abnormally high or 
low estimates for the missed values. To 
resolve this, we roughly bounded any 
prediction between 1.2×ymax and 0.8×ymin, 
where ymax and ymin are the maximum and 
minimum values in the time series, 
respectively. The maximum order of a 
polynomial corresponding to these criteria 
was then selected. 

 
Results and Discussion 
1. Statistical considerations 
There may be a suspicious thought that the 
data are not homogeneous before and after the 
Second World War. Therefore, we divided the 
data into two main groups of 1893-1940, and 
1951-2000. Although the second time series is 
complete, the first one is not. At this stage we 
ignored the missed data and considered this 
series complete. The main statistical 
characteristics of these 2 series are presented 
in Table 1. There are no marked differences 
between these two series. Due to nearly equal 
means and standard deviations of the series, 
all data was pooled together and the normality 
test was conduted [14] over it. Fig. 2 shows 
an output portrayal for The Ryan-Joiner 
normality test [11], which supports that the 
rainfall time series is normal. The other two 
Anderson-Darling tests, and Darling tests, the 
Kolmogrov-Smirnov tests were essentially the 
same, and therefore are not shown here. 
Based on the normality hypothesis, it 
followed that at a 5% level of significance, 
there is no reason to reject the null hypothesis 
of H0: σ1

2=σ2
2 against the alternative 

hypothesis of H1: σ1
2≠σ2

2.  Comparing the 
means of the two groups by both the rank-
sum test as a non-parametric test, and the two-
sample t test as a parametric test, [13], could 
not reject that the two groups are identically 
distributed with the same means. The 
Kruskal-Wallis test for multi-groups (k=2) 
[13] also confirmed the above findings. 
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Table 2 presents the statistical features of 
three lines corresponding to different time 
spans. These statistical features do not 
illustrate many differences. As statistical tests 
could not reject the equality of the variances, 
the equality of the two trend lines was tested 
[12]. The results are abbreviated in an 
ANOVA table (Table 3). Based on the results 

of Table 3, (a) the hypothesis of the equality 
of the two slopes can not be rejected at α=5% 
level of significance, (b) there is no reason to 
reject the equality of intercepts, (c) there is no 
linear association of time on rainfall 
(correlation coefficients do not differ from 
zero). 

  
Fig. 2. Ryan-Joiner normality test for Mashhad annual rainfall (in). 

  
 

Table (1) The main characteristics of the 2 time series of Mashhad rainfall 

Series number N X (in) SD (in) min(in) max (in) Skewness 
1 (1893-1940) 42 10.0017 3.5254 3.12 18.07 0.4040 
2 (1951-2000) 50 10.1492 2. 8686 5.15 16.81 0.4261 

Total 92 10.0818 3. 1679 3.12 18.07 0.3968 
Completed 108 10.1323 2.9506 3.12 18.07 0.3690 

 
 

Table (2) Statistical features of the 2 trend lines corresponding to two halves of time series* 

Parameter First half 
(1893-1940) 

Second half 
(1951-2000) Total span 

a (in) 8.8525 9.4188 9.5728 
b 0.0452 0.0286 0.0089 
r 0.1781 0.1456 0.0912 

σ2 (in2) 12.3351 8.2223 8.5440 
n 42* 50 108 

* missed data not included 
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Table (3) ANOVA table for comparing the 2 trend lines corresponding to 2 halves of time series 

F-value 
Source Sum of square 

Degrees of 

freedom 
Mean square 

Measured Critical 

Overall 23.48 1 23.483 2.3269 3.96 

Differences in position 0.44 1 0.4429 0.0439 3.96 

Differences in slope 1.23 1 1.2266 0.1215 3.96 

Residual 888.11 88 10.092   

Total 913.26 91    

 
2. Estimation methods 
a. kriging 
Rainfall values did not resemble a meaningful 
time trend. Therefore, simple point kriging 
versus universal kriging is a good alternative.  
Fig. 3 depicts the semi-variogram of the raw 
data. As the lag proceeds, the semi variogram 
is computed from fewer paired points. 
Therefore, an active lag, usually, is taken at 
most 50% of the total lag. Fig. 3 is prepared 
for the maximum lag, however. There is no 
difference between the active and maximum 
lags on the trends of the semi variogram data 
points. Different theoretical models are fitted 
to the semi variogram data of Fig. 3. 
However, none of the models resulted in a fair 
fit. The outputs of some of the common 
models are plotted in Fig. 3 for a rapid 
comparison with the scatters of raw data. 
Based on this figure, one may conclude that 
not only is the nugget variance very high, but 
also there is a weak dependency of data to 
each other at any time lag. This weak 
dependency causes all theoretical semi-
variogram models to appear  nearly the same. 
Therefore, outputs of all of the semi-
variogram models showed high correlations 

with each other (Table 4). As a result, we 
used an average for the kriged values 
corresponding to every piece of missed data 
amongst the 5 models. A comparison of 
Mashhad annual rainfall missed-value 
estimations by different methods is made in 
Table 5.  
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Table (4) Correlation of different series of estimated Mashhad annual rainfall  
from some common semi-variogram models 

Power  Linear  Gaussian  Exponential Spherical   Semi-
variogram 

model  
0.9962 0.9969 0.9938 0.9945 1 Spherical  
0.9816 0.9831 0.9767 1 0.9945 Exponential 
0.9997 0.9994 1 0.9767 0.9938 Gaussian  

1 1 0.9994 0.9831 0.9969 Linear  

1 1 0.9997 0.9816 0.9962 Power  
 

Table 5. Comparison of Mashhad annual rainfall missed-value estimations (inch) 
 by different methods    

Degree of moving average for Polynomial fit+ 
Year 

Method 
Linear 
trend 

Krging 1 3 5 7 9 11 
Time 

series* 

1894 9.59 8.11 8.38 15.05 10.36 18.83 12.07 3.41 10.07 
1895 9.60 8.11 12.05 13.22 8.68 10.81 16.17 8.52 12.88 
1905 9.69 12.07 13.43 7.34 7.35 10.62 5.09 8.52 14.09 
1918 9.80 8.83 9.82 12.51 19.36 3.39 11.99 18.25 10.07 
1919 9.81 9.79 10.41 10.32 8.00 3.67 11.16 9.34 9.26 
1929 9.90 11.23 10.64 17.13 5.40 7.40 5.28 15.72 8.05 
1941 10.01 10.39 9.46 17.72 10.96 8.93 3.23 13.51 10.16 
1942 10.02 10.39 8.93 6.08 10.56 12.94 7.51 15.68 10.16 
1943 10.03 10.39 8.41 10.86 7.84 11.18 11.97 10.63 10.16 
1944 10.04 10.83 7.95 18.21 17.68 5.52 15.86 8.16 10.16 
1945 10.04 10.05 7.62 6.47 6.37 10.25 12.98 10.37 10.16 
1946 10.05 11.27 7.46 11.13 10.47 14.47 10.68 6.25 10.16 
1947 10.06 9.78 7.51 18.35 10.04 11.97 14.16 7.46 10.16 
1948 10.07 10.38 7.76 6.48 7.29 10.08 11.38 9.77 10.16 
1949 10.08 10.38 8.20 11.02 17.10 13.98 8.22 7.07 10.16 
1950 10.09 10.38 8.76 18.12 5.77 12.03 1.90 16.91 10.16 

+ selected polynomial orders for 1, 3, 5, 7,  9, and 11 moving averages are 24, 16, 8, 8, 7, and 5, 
respectively. 
* after Khalili and Bazrafshan [14] 

 
b. Polynomial fit 
The best moving average order is not known. 
While Adopting a low order causes greater 
variation of rainfall data, a high order for the 
moving average resulted in losing more data. 
Fig. 4 is a portrayal showing more sparse time 
series as the moving average order progress. 
On the other hand, a low polynomial order 
causes rigidity in fitting the data, yet a high 
polynomial order may be responsible for 
sharp fitting the humps and depressions. 
While Fig. 5 shows such a sharp fit of the 
higher order polynomial of 10 to humps and 

depressions, especially for a 9-year moving 
average sparse series. The results of 
polynomial fits are also included in Table 5. 
c. Selecting the optimum values 
Table 5 portrays some differences amongst 
the different methods of estimation. Yet the 
coefficient of variations corresponding to 
every year of missed-data, on average, is 
0.326 (Table 6). The statistical features of the 
completed series are included in Table 1. The 
Skewness coefficient of the completed series 
is lower by around 7%, while the other 
parameters are in the limit of the raw data. 
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Fig. 4. Measured annual rainfall (in) at different orders (1 for 1886) 
estimated by polynomial regression (thick line). Thin line is due to actual data. 

We compared our results with a time series 
model (Khalili and Bazrafshan, [14]). Based on 
the resolution of the figures of this reference, 
rainfall values corresponding to the data-
missed years were determined (Table 5). Our 
results, on average, differed from those of 

Khalili and Bazrafshan [14] by 0.38%. 
However, a constant rainfall value of 10.16" 
for 10 consecutive years from 1941-1950 
seems rather strange. This may be a clue to 
the mal-functioning of time series modeling 
for the rainfall time series. 
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Fig. 5. Danger of high polynomial order to sparse time series (polynomial order 10 for 9-year 
moving average) (dashed line). Historic data are connected by solid line (ignoring missed data). 

 
 
 

Table 6. Simple statistical inferences on different methods  
of Mashhad annual rainfall missed-value estimations (Table 5). 

Year average (inch) CV 
1894 11.8 0.461 
1895 11.10 0.242 
1905 8.97 0.302 
1918 12.04 0.408 
1919 8.43 0.346 
1929 10.62 0.394 
1941 10.53 0.390 
1942 10.26 0.294 
1943 10.16 0.137 
1944 11.78 0.410 
1945 9.27 0.245 
1946 10.22 0.244 
1947 11.17 0.326 
1948 9.15 0.190 
1949 10.76 0.310 
1950 10.50 0.510 
Mean ------ 0.326 

 
Conclusion 
Having a complete time series is important in 
design applications. Different methods were 
utilized to estimate rainfall values for the 16 
years of missed values. Geostatistical and 

kriging techniques were applied to The 
Mashhad long-term annual rainfall time 
series. All the semi-variogram models were 
poor. As a result, the estimated rainfalls were 
distributed among the mean. Further 
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investigations are needed to reach a firm 
conclusion on the applicability of 
geostatistical methods for data filling 
purposes. We adopted the polynomial 
regression fits of different moving average 
orders and also different polynomial orders. 
Coefficient variation amongst different 
methods, on average for 16 years of missed-
data, was around 0.3. Also the deviation 
among our results and a literature-reported 
time series method, was completely 
negligible. Therefore, different methods 
verify each others. As none of the methods 
are crucial, it may be hypothesized that the 
results are satisfactory.  
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