[صفحه اصلی ]   [Archive] [ English ]  
:: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات پایگاه::
اطلاعیه ها::
::
شناسنامه نشریه
صاحب امتیاز
انجمن آبخیزداری ایران
►مدیر مسئول
دکتر سیدحمیدرضا صادقی
►سردبیر
دکتر علی طالبی
►مدیر اجرایی
مهندس فرهاد بهبودی
►مدیر داخلی
دکتر عاطفه جعفرپور
►کارشناس
دکتر سودابه قره‌محمودلی
►دوره انتشار
فصل‌نامه
►شاپا الکترونیکی
2008-9554
..
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
سایت انجمن آبخیزداری ایران
سایت انجمن آبخیزداری ایران
پژوهشکده حفاظت خاک و آبخیزداری
..
مجله اکوهیدرولوژی

مجله اکوهیدرولوژی

..
:: دوره 9، شماره 31 - ( 10-1394 ) ::
جلد 9 شماره 31 صفحات 110-98 برگشت به فهرست نسخه ها
کاربرد شبکه های عصبی مصنوعی در پیش بینی بارش زمستانه
غلامعباس فلاح قالهری* ، فهیمه شاکری
چکیده:   (8629 مشاهده)

پیش‌بینی بارش یکی از مهم‌ترین مسائل در زمینه مدیریت بهینه منابع آب در بخش‌های مختلف نظیر صنعت، شرب و کشاورزی است. پیش بینی بارش می تواند باعث جلوگیری از تلفات و خسارات ناشی از بلایای طبیعی شود. هدف از تحقیق حاضر پیش‌بینی بارش زمستانه استان خراسان رضوی با استفاده از شبکه‌های عصبی مصنوعی می‌باشد. بدین منظور، ابتدا سری زمانی بارش متوسط منطقه‌ای به روش کریجینگ در طول دوره آماری به دست آورده شد. سپس سری زمانی سیگنال های اقلیمی شامل فشار، گرادیان فشار، دما، گرادیان افقی دما، گرادیان قائم دما بین سطح دریا و سطح 1000 میلی بار، تابش طول موج بلند خروجی از سطح زمین، آب قابل بارش، مولفه مداری باد، مولفه نصف النهاری باد، دمای هوا در سطح 700 میلی بار، ضخامت بین سطوح 500 و 1000 میلی بار و رطوبت نسبی در سطح 300 میلی بار در بازه های زمانی مختلف محاسبه شد. در ادامه ارتباط بین پیش بینی کننده های اقلیمی با بارش متوسط منطقه با استفاده از ضریب همبستگی پیرسون به دست آورده شد. پس از شناسایی سیگنال های موثر بر بارش منطقه، مدل شبکه های عصبی مصنوعی در دوره 1997-1970 آموزش داده شد و در پایان، پیش بینی بارش در دوره 2007-1998 انجام شد. نتایج نشان داد شبکه های عصبی مصنوعی قادر است بارش را با دقت قابل قبولی پیش بینی نماید. ضریب همبستگی بین بارش مشاهده شده و پیش‌بینی شده در مرحله تست مدل، 66/0 به دست آمد. ریشه میانگین مربعات خطا نیز 9/6 میلی متر به دست آمد.

واژه‌های کلیدی: پیش بینی بارش، ریشه میانگین مربعات خطا، روش کریجینگ، شبکه های عصبی مصنوعی، ضریب همبستگی پیرسون.
متن کامل [PDF 769 kb]   (1717 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1392/11/30 | پذیرش: 1394/12/15 | انتشار: 1395/2/14
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fallah Ghalhari G, Shakeri F. The application of Artificial Neural Networks techniques in the rainfall prediction. jwmseir 2016; 9 (31) :98-110
URL: http://jwmsei.ir/article-1-249-fa.html

فلاح قالهری غلامعباس، شاکری فهیمه. کاربرد شبکه های عصبی مصنوعی در پیش بینی بارش زمستانه. مجله علوم ومهندسی آبخیزداری ایران. 1394; 9 (31) :98-110

URL: http://jwmsei.ir/article-1-249-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 9، شماره 31 - ( 10-1394 ) برگشت به فهرست نسخه ها
مجله علوم ومهندسی آبخیزداری ایران Iranian Journal of Watershed Management Science and Engineering
به اطلاع کلیه نویسندگان ، محققین و داوران  محترم  می رساند:

با عنایت به تصمیم  هیئت تحریریه مجله علمی پژوهشی علوم و مهندسی آبخیزداری فرمت تهیه مقاله به شکل پیوست در بخش راهنمای نویسندگان تغییر کرده است. در این راستا، از تاریخ ۱۴۰۳/۰۱/۲۱ کلیه مقالات ارسالی فقط در صورتی که طبق راهنمای نگارش جدید تنظیم شده باشد مورد بررسی قرار خواهد گرفت.
Persian site map - English site map - Created in 0.05 seconds with 42 queries by YEKTAWEB 4645